ZETA MATHS National 5 Mathematics Revision Checklist

Contents:

Expressions & Formulae	Page
Rounding	1
Surds	1
Indices	1
Algebra	1
Algebraic Fractions	2
Volumes	
Gradient	3
Circles	3

Relationships

The Straight Line	4
Solving Equations/Inequations	4
Simultaneous Equations	4
Change the Subject	5
Quadratic Functions	5
Properties of Shapes	7
Similar Shapes	8
Trigonometry (Graphs and Equations)	8

Applications

Triangle Trigonometry	11
Vectors	11
Percentages	12
Fractions	12
Statistics	12

Expressions and Formulae

Торіс	Skills	Extra Study / Notes
Rounding		
Round to decimal places	e.g. $25.1241 \rightarrow 25.1$ to 1 d.p.	
	34.676 → 34.68 to 2 d.p.	
Round to Significant	e.g. 1276→1300 to 2 sig. figs.	
Figures	0.06356 → 0.064 to 2 sig. figs.	
	37,684 → 37,700 <i>to 3 sig. figs.</i>	
	0.005832→0.00583 to 3 sig. figs.	
Surds		
Simplifying	Learn Square Numbers: 4, 9, 16, 25, 36, 49, 64, 81,	,
	100, 121, 144, 169.	
	Use square numbers as factors:	
	e.g. $\sqrt{50} = \sqrt{25} \times \sqrt{2} = 5\sqrt{2}$	
Add/Subtract	e.g.	
	$\sqrt{50} + \sqrt{8} = \sqrt{25} \times \sqrt{2} + \sqrt{4} \times \sqrt{2} = 5\sqrt{2} + 2\sqrt{2} = 7\sqrt{2}$	
Multiply/Divide	e.g. $\sqrt{5} \times \sqrt{15} = \sqrt{5 \times 15} = \sqrt{75} = \sqrt{25} \times \sqrt{3} = 5\sqrt{3}$	
	-	
	$\frac{\sqrt{48}}{\sqrt{3}} = \sqrt{\frac{48}{3}} = \sqrt{16} = 4$	
	$\sqrt{3}$ V 3	
Rationalise	Remove surd from denominator.	
Denominator	1 $1 \times \sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$	
	e.g. $\frac{1}{\sqrt{3}} = \frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = \frac{\sqrt{3}}{\sqrt{9}} = \frac{\sqrt{3}}{3}$	
Indiana	V3 V3 V3 V5 °	
Indices Use Laws of Indices		
Use Laws of mulces	1. $a^{x} \times a^{y} = a^{x+y}$ e.g. $a^{2} \times a^{3} = a^{2+3} = a^{5}$	
	2. $a^x \div a^y = a^{x-y}$ $a^7 \div a^4 = a^{7-4} = a^3$	
	3. $(a^x)^y = a^{xy}$ $(a^4)^5 = a^{4x5} = a^{20}$	
	1 1	
	4. $\frac{1}{a^x} = a^{-x}$ $\frac{1}{a^3} = a^{-3}$	
	5. $a^0 = 1$ $a^0 = 1$	
Scientific Notation /	The first number is always between 1 and 10.	
Standard Form	e.g. $54,600 = 5.46 \times 10^4$	
	$0.000978 = 9.78 \times 10^{-4}$	
	$(1.3 \times 10^5) \times (8 \times 10^3) = 10.4 \times 10^8 = 1.04 \times 10^9$	
Evaluate using indices	e.g. $27^{\frac{2}{3}} = \sqrt[3]{27^2} = 3^2 = 9$	
Algebra		
Expand Single Bracket	3(x+4) = 3x + 12	
Expand Two Brackets	Use FOIL (Firsts Outsides Insides Lasts) or another	
Expand Two Drackets	suitable method	
	$(x+3)(x-2) = x^{2} + 3x - 2x - 6 = x^{2} + x - 6$	
	Know that every term in the first bracket must	
	multiply every term in the second.	
	e.g. $(-2)(\frac{2}{3}, 2)(\frac{3}{3}, 2)^2 = (-2)^2 = (-2)^2$	
	$(x + 2)(x^2 - 3x - 4) = x^3 - 3x^2 - 4x + 2x^2 - 6x - 8$ = $x^3 - x^2 - 10x - 8$	
Simplify Expression	= x - x - 10x - 8 Put together the terms that are the same:	
Simpling Expression	e.g. $x^2 + 4x + 3 - 2x + 8 = x^2 + 2x + 11$	
	a × a × a = a^3	
Factorise – Common	Take the factors each term has in common outside	
Factor	the bracket:	
	e.g. $4x^2 + 8x = 4x(x + 2)$	
	NB: Always look for a common factor first.	

Торіс	Skills	Notes		
Factorise – Difference of Two Squares	Always takes the same form, one square number take away another. Easy to factorise: e.g. $x^2 - 9 = (x + 3)(x - 3)$ $5x^2 - 125 = 5(x^2 - 25)$ (Common factor first) = 5(x + 5)(x - 5)			
Factorise – Trinomial (simple)	 Use any appropriate method to factorise: e.g. Opposite of FOIL: Factors of first term are Firsts in brackets. Lasts multiply to give last term and add to give middle term. x² - x - 6 = (x - 3)(x + 2) 			
Factorise – Trinomial (hard)	$x^{2} - x - 6 = (x - 3)(x + 2)$ This is more difficult. Use suitable method. Using opposite of FOIL above with trial and error. NB: The Outsides add Insides give a check of the correct answer: e.g. $3x^{2} - 13x - 10$ = (3x - 5)(x + 2) - Check: $3x \times 2 + (-5) \times x = 6x - 5x = -x$ X = (3x + 2)(x - 5) Check: $3x \times (-5) + 2 \times x = -15x + 2x = -13x$ ✓ If the answer is wrong, score out and try alterative factors or positions. Keep a note of the factors you have tried.			
Complete the Square	e.g. $x^2 + 8x - 13 = (x + 4)^2 - 13 - 16 = (x + 4)^2 - 29$			
Algebraic Fractions				
Simplifying Algebraic Fractions	Step 1: Factorise expression Step 2: Look for common factors. Step 3: Cancel and simplify $\frac{6x^2 - 12x}{x^2 + x - 6} = \frac{6x(x - 2)}{(x + 3)(x - 2)} = \frac{6x}{x + 3}$			
Add and Subract Fractions	Find a common denominator. This can be done either by working out the lowest common denominator, or by using Smile and Kiss $\frac{5a}{b} + \frac{3d}{2c} = \frac{10ac}{2bc} + \frac{3bd}{2bc} = \frac{10ac + 3bd}{2bc}$			
Multiply Fractions	Multiply top with top, bottom with bottom: $\frac{3a}{7c} \times \frac{4b}{5d} = \frac{12ab}{35cd}$			
Divide Fractions	Invert second fraction and multiply: $\frac{6x^2}{7y} \div \frac{4x}{3z} = \frac{6x^2}{7y} \times \frac{3z}{4x} = \frac{18x^2z}{28xy} = \frac{9xz}{14y}$			
Volumes	1	I	<u> </u>	
Volume of a prism	V = Area of base x height			
Volume of a cylinder	$V = \pi r^2 h$			
Volume of a cone	$V = \frac{1}{3}\pi r^2 h$			
Volume of a sphere	$V = \frac{4}{3}\pi r^3$			

Торіс	Skills	Notes	
Rearrange each of the formulae to find an unknown	e.g. Cylinder has volume 400cm ³ and radius 6cm, find the height $V = \pi r^2 h$ $h = \frac{400}{\pi \times 6^2}$ $\frac{V}{\pi r^2} = h$		
Volume of composite shapes	These are two of the above combined: Label them V ₁ and V ₂ e.g. $V_1 = \frac{4}{3}\pi r^3 \div 2$ $V_2 = \pi r^2 h$ $V_2 = \dots$		
Gradient			<u> </u>
Find the gradient of a line joining two points	Know that gradient is represented by the letter m Step 1: Select two coordinates Step 2: Label them $(x_1, y_1) (x_2, y_2)$ Step 3: Substitute them into gradient formula e.g. $\begin{pmatrix} x_1 & y_1 & x_2 & y_2 \\ (-4, 4), (12, -28) \end{pmatrix}$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(-28) - 4}{12 - (-4)} = -\frac{-32}{16} = -2$		
Circles			- T - T
Length of Arc	This finds the length of the arc of a sector of a circle: $LOA = \frac{angle}{360} \times \pi d$ or $\frac{LOA}{\pi d} = \frac{angle}{360}$ For harder questions rearrange formula to find angle		
Area of Sector	$AOS = \frac{angle}{360} \times \pi r^2 \text{ or } \frac{AOS}{\pi r^2} = \frac{angle}{360}$ For harder questions rearrange formula to find angle		

Relationships

Торіс	Skills	Notes	
Straight Line			
Gradient	Represented by <i>m</i>		
	Measure of steepness of slope		
	 Positive gradient – the line is increasing 		
	 Negative gradient – the line is decreasing 		
Y-intercept	Represented by c		
·	 Shows where the line cuts the y-axis 		
	• Find by making x = 0		
Find the gradient of a	Know that gradient is represented by the letter m		
line joining two points	Step 1: Select two coordinates		
	Step 2: Label them $(x_1, y_1) (x_2, y_2)$		
	Step 2: Substitute them into gradient formula		
	$X_1 V_1 X_2 V_2$		
	e.g. (-4, 4), (12, -28)		
	$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(-28) - 4}{12 - (-4)} = \frac{-32}{16} = -2$		
	$x_2 - x_1 = 12 - (-4) = 16$		
Find equation of a line	Step 1: Find gradient <i>m</i>		
(from gradient and y-	Step 2: Find y-intercept c		
intercept)	Step 3: Substitute into $y = mx + c$ (see above for		
	definitions)		
Find equation of a line	Use this when there are only two points		
(from two points)	(i.e. no y-intercept)		
	Step 1: Find gradient		
	Step 2: Substitue into $y - b = m(x - a)$ where (a, b) are		
Decimentary and the second	taken from either one of the points		
Rearrange equation to	e.g. $3y + 6x = 12$		
find gradient and y- intercept	3y = -6x + 12 y = -2x + 4 $m = -2, c = 4$		
Sketch lines from their	Step 1: Rearrange equation to the form $y = mx + c$	-	
equations	(see note above)		
equations	Step 2: Draw a table of points		
	Step 3: Plot points on coordinate axes		
Solving Equations /			
Solving Equations	Use suitable method:		
0 1	e.g. $5(x+4) = 2(x-5)$		
	5x + 20 = 2x - 10		
	5x = 2x - 30		
	3x = -30		
	x = -10		
Solving inequations	Solve the same way as equations.		
	NB: When dividing by a negative change the sign:		
	e.g. -3x ≤ 15		
	x ≥ -5		
Simultaneous Equat			
Solve by sketching lines	Step 1: Rearrange lines to form $y = mx + c$		
	Step 2: Sketch lines using table of points (as above)		
	Step 3: Find coordinate of point of intersection	+	
Solve by substitution	This works when one or both equations are of the form		
	y = ax + b		
	e.g. Solve $3x + 2y = 17$ y = x + 12		
	Sub equation 2 into 1: 3x + 2(x + 1) = 17		
	5x + 2(x + 1) = 17 5x + 2 = 17		
	x = 3 so $y = 3 + 1 = 4$		
	x-5 30 y-5 1 - 4		

Торіс	Skills		Notes	
Simultaneous Equat	ions Contd.			
Solve by Elimination	Step 1: Scale equations to mak opposite sign. Step 2: Add Equations to elimin Step 3: Substitute number to fi	nate equal term and solve. Ind second term.		
	e.g. $4a + 3b = 7$ $2a - 2b = -14$ (1) x 2 $8a + 6b = 14$ (2) x 3 $6a - 6b = -42$ (3) + (4) $14a = -28$ $a = -2$			
	substitute a = -2 into 4(-2) + 3b = 7 3b = 15 b = 5	(1) Ans. a = -2, b = 5		
Form Equations	Form equations from a variety unknowns	of contexts to solve for		
Change the Subject	unknowns			
Linear Equations	Rearrange equations change th	ne subject:		
	e.g. D = 4C - 3 [C] D + 3 = 4C	y = 5(z + 6) [z] $\frac{y}{5} = z + 6$	-	
	$\frac{D+3}{4}=C$	$\frac{y}{5} - 6 = z$ $z = \frac{y}{5} - 6$		
	$C = \frac{D+3}{4}$	$z = \frac{y}{5} - 6$		
Equations with powers or roots	e.g. $V = \pi r^2 h$ [r] $\frac{V}{\pi h} = r^2$			
	$r = \sqrt{\frac{V}{\pi h}}$			
Quadratic Functions				
Quadratics and their equations	$\mathbf{y} = \mathbf{x}^2 \qquad \mathbf{y}$	$r = -x^2$		
	y = 2x ² y	= x ² + 5		
	$y = (x - 3)^2$ $y = ($	x + 2) ² - 3		

Торіс	Skills	Notes		
Equations of quadratics y = kx ²	Step 1: Identify coordinate from graph Step 2: Substitute into $y = kx^2$ Step 3: Solve to find k e.g. Coordinate: (2, 2) Substitution: $2 = k(2)^2$ 2 = 4k k = 0.5 Quadratic: $y = 0.5x^2$			
Sketching Quadratics y = k(x + a) ² + b	<pre>Step 1: Identify shape, if k = 1 then graph is +ve or if k = -1 then the graph is -ve Step 2: Identify turning point (-a, b) Step 3: Sketch axis of symmetry x = -a Step 5: Find y-intercept (make x = 0) Step 4: Sketch information</pre>			
Sketching Quadratics (Harder) y = (x + a)(x – b)	Step 1: Identify shape (+ve or -ve) Step 2: Identify roots (x-intercepts) $x = -a, x = b$ Step 3: Find y-intercept (make $x = 0$) Step 4: Identify turning point e.g. $y = (x + 4)(x - 2)$ +ve graph \therefore Minimum turning point Roots: $x = 2, x = -4$ y-intercept: $y = (0 + 4)(0 - 2) = -8$ Turning Point (-1, -9) (see below) NB: Turning point is halfway between roots. x-coord = $(2 + (-4)) \div 2 = -1$ y-coord = $(-1 + 4)(-1 - 2) = -9$			
Solving Quadratics (finding roots) – Algebraically	Step 1: Equate to zeroStep 2: Factorise quadraticStep 3: Set each factor equal to zeroStep 4: Solve each factor to find rootse.g. $y = x^2 + 4x$ $y = x^2 - 5x - 6$ $x(x + 4) = 0$ $(x - 6)(x + 1) = 0$ $x = 0$ or $x + 4 = 0$ $x - 6 = 0$ or $x + 1 = 0$ $x = 0$ or $x = -4$ $x = 6, x = -1$			
Solving Quadratics (finding roots) – Graphically	Read roots from graph y y y x = 2, x = -2			
Solving Quadratics – Quadratic Formula	When asked to solve a quadratic to a number of decimal places use the quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ where y = ax ² + bx + c			

Торіс	Skills	Notes			
	e.g. Solve $y = x^2 - 6x + 2$ to 1 d.p.				
	a = 1 b = -6 c = 2				
	$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \times 1 \times 2}}{2 \times 1}$ $x = \frac{6 \pm \sqrt{28}}{2}$ $x = \frac{6 \pm \sqrt{28}}{2}$ $x = \frac{6 \pm \sqrt{28}}{2}$				
	$x = \frac{-(-0) \pm \sqrt{(-0)^2 - 4 \times 1 \times 2}}{2 \times 1}$				
	$\zeta \sim \sqrt{20}$				
	$x = \frac{b \pm \sqrt{28}}{2}$				
	$6 - \sqrt{28}$				
	$x = \frac{6 + \sqrt{28}}{2}$ $x = \frac{6 - \sqrt{28}}{2}$				
Discriminant	x = 5.6 $x = 0.4b^2 - 4ac where y = ax^2 + bx + c$				
Discriminant	The discriminant describes the nature of the roots				
	$b^2 - 4ac > 0$ two real roots				
	$b^2 - 4ac > 0$ two real roots $b^2 - 4ac = 0$ equal roots (tangent to axis)				
	$b^2 - 4ac < 0$				
Using the Discriminant					
Using the Discriminding	Example 1: Determine the nature of the roots of the supervision $y^2 + 5y + 4$				
	quadratic y = x^2 + 5x + 4				
	Solution: $a = 1$, $b = 5$, $c = 4$ $b^{2} - 4ac = 5^{2} - 4 \times 1 \times 4 = 25 - 16 = 9$				
	Since $b^2 - 4ac > 0$ the quadratic has two real roots.				
	Example 2: Determine p, where $x^2 + 8x + p$ has equal				
	roots Solution: $b^2 - 4ac = 0$				
	$8^2 - 4 \times 1 \times p = 0$				
	64 - 4p = 0				
	64 = 4p				
Properties of Shapes	P = 16				
Circles			Γ		
			<u> </u>	$\left - \right $	
Pythagoras	Use Pythagoras Theorem to solve problems involving				
	circles and 3D shapes. e.g. Find the depth of water in a pipe of radius 10cm.				
	r is the radius				
	$x^2 = 10^2 - 9^2$				
	10 cm x $x^2 = \dots$				
	x = 4.4cm				
	Depth = $10 - 4.4 = 5.6$ cm				
				1	1

Торіс	Skills	Notes	
Similar Shapes			
Linear Scale Factor	New.Length		
	Linear.Scale.Factor = Original.Length		
Area Scale Factor	$($ NewLength $)^2$		
	Area.Scale.Factor = $\left(\frac{\text{New.Length}}{\text{Original.Length}}\right)$		
Volume Scale Factor	· · · · · · · · · · · · · · · · · · ·		
	Volume.Scale.Factor = $\left(\frac{\text{New.Length}}{1}\right)$		
	Original.Length		
Trigonometry			
Trig Graphs – Sine	$y = a \sin b x + c$		
Curve	 <i>a</i> = maxima and minima of graph <i>b</i> = no. of waves between 0 and 360° 		
	<i>c</i> = movement of graph vertically		
	y = sin x maxima and minima 1 and -1, period = 360°		
	180° 360° x		
	-1		
	1		
	y = 2sin x		
	^y ↑		
	2		
	180° 360° x		
	-2-		
	y = sin 3x		
	y on on		
	60° 120° x		
	60° 120° x		
	-1		
	,		
	y = 2sin x + 2		
	<i>y</i> †		
	4-		
	2		
	180° 360° x		
	-21		
	y = -sin x		
	У▲		
	180° 360° x		

Торіс	Skills	Notes		
	y = sin (x - 30°) y 1			
Trig Craphs Casing	-1 - 30° 210° 360° x			
Trig Graphs – Cosine Curve	 y = acos bx + c a = maxima and minima of graph b = no. of waves between 0 and 360° c = movement of graph vertically 			
	y = cos x maxima and minima 1 and -1, period = 360°			
	-1- The same transformations apply for Cosine as Sine (above)			
Trig Graphs – Tan Curve	y = tan x no maxima or minima, period = 180°			
	-50 50			
Solving Trig Equations	Know the CAST diagram			
	Sin All (positive) (positive) 180 - x × ×			
	180 + x 360 - x			
	Tan Cos (positive) (positive)			
	Memory Aid: All Students Take Care Use the diagram above to solve trig equations:			
	Example 1: Solve $2\sin x - 1 = 0$ $2\sin x = 1$ $\sin x = \frac{1}{2}$ $x = \sin^{-1}(\frac{1}{2})$ $x = 30^{\circ}, 180^{\circ} - 30^{\circ}$ $x = 30^{\circ}, 150^{\circ}$			
	Example 2: Solve $4\tan x + 5 = 0$ $4\tan x = -5$ $\tan x = -5/4$ NB: tan x is negative so there will be solutions in the			
	second and fourth quadrant $x = \tan^{-1}(5/4)$ $x_{acute} = 51.3^{\circ}$ $x = 180^{\circ} - 51.3^{\circ}, 360 - 51.3^{\circ}$ $x = 128.7^{\circ}, 308.7^{\circ}$			

Торіс	Skills	Notes		
Trig Identities	Know: $\sin^2 x + \cos^2 x = 1$ $\therefore \sin^2 x = 1 - \cos^2 x$ and $\cos^2 x = 1 - \sin^2 x$			
	and $\tan x = \frac{\sin x}{\cos x}$			
	Use the above facts to show one trig function can be			
	another. Start with the left hand side of the identity and			
	work through until it is equal to the right hand side.			

National 5 Learning Checklist - Applications

Торіс	Skills	Extra Study / Notes			
Triangle Trigonomet	try				
Triangle	Label Triangle C				
5	b 🛆 a				
	A c B			<u> </u>	
Area of a Triangle	$A = \frac{1}{a}absinC$				
Cine Dule	2			 	
Sine Rule	$\frac{a}{b} = \frac{b}{c} = \frac{c}{c}$				
	sinA sinB sinC		_	├──	
	Use Sine Rule to find a side			 	
	Use Sine Rule to find an angle. NB: sinA =				
	$A = \sin^{-1}()$				
Coosine Rule	Use $a^2 = b^2 + c^2 - 2bc\cos A$ to find a side				
	Use $u = b + c - 2bc \cos A$ to find a side		_		┼──┤
	Use $\cos A = \frac{b^2 + c^2 - a^2}{2t}$ to find an angle				
	$2bc$ NB: $\cos A = \dots$				
	A = $\cos^{-1}()$				
Bearings	Use knowledge of bearings to solve trig problems.		_		
bearings	Including knowledge of Corresponding, Alternate				
	and Supplementary angles.				
	NB: Extend right north arrow				
	and use Z-angles				
M	1			<u> </u>	
Vectors	Add or subtrast 2D line Cognants				
2D Line Segments	Add or subtract 2D line Segments Vectors end-to-end 				
	Arrows in same direction				
	a+b				
Position Vectors	The position vector of a coordinate is the vector				
	from the origin to the coordinate. E.g. A (4, -3) has				
	the position vector $\mathbf{a} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$				
	$a = \begin{pmatrix} -3 \end{pmatrix}$				
Finding a Vector from	Know that to find a vector between two points A and				
Two Coordinates	B then $\overrightarrow{AB} = b - a$ $y \blacklozenge$				
	A b-a				
	NB: Vector notation for a $-a$				
	vector between two points				
	A and B is \overrightarrow{AB}				
3D Vectors	Determine coordinates of a point from a diagram				
	representing a 3D object				
	Look at difference in x, y and z axes individually				
	e.g. Find the coordinates of C				
	<i>B</i> (15, 9, 6)				
	y y				
	c c				
	A (4, 5, 0)				
	<i>C</i> (15, 9, 0)				

Торіс	Skills	Notes		
Vector Components	Add and Subtract 2D and 3D vector components.			
	$\begin{pmatrix} 1 \end{pmatrix}$ $\begin{pmatrix} 3 \end{pmatrix}$ $\begin{pmatrix} 1+3 \end{pmatrix}$			
	$\mathbf{a} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} \text{ and } \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 5 \end{pmatrix} \mathbf{a} + \mathbf{b} = \begin{pmatrix} 1+3 \\ 1+2 \\ 4+5 \end{pmatrix}$			
	$\begin{pmatrix} 4 \end{pmatrix}$ $\begin{pmatrix} 5 \end{pmatrix}$ $\begin{pmatrix} 4+5 \end{pmatrix}$			
	Multiply vector components by a scalar			
	$\begin{pmatrix} 1 \\ \end{pmatrix} \begin{pmatrix} 2 \\ \end{pmatrix}$			
	$2\mathbf{a} = 2 \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 8 \end{pmatrix}$			
	Find the magnitude of a 2D or 3D vector:			
	For vector $\boldsymbol{u} = \begin{pmatrix} x \\ y \end{pmatrix}$, $ \boldsymbol{u} = \sqrt{x^2 + y^2}$ For vector $\boldsymbol{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $ \boldsymbol{v} = \sqrt{x^2 + y^2 + z^2}$			
	(\mathbf{y})			
	$\begin{pmatrix} x \\ z \end{pmatrix} \rightarrow \begin{pmatrix} x \\ z \end{pmatrix}$			
	For vector $\mathbf{v} = \begin{vmatrix} y \\ y \end{vmatrix}$, $ v = \sqrt{x^2 + y^2} + z^2$			
	(2)			
Percentages	Calculate multiplier from percentage	1		
Compound Interest	Calculate multiplier from percentage: e.g. 5% increase			
	100% + 5% = 105% = 1.05			
	Use multiplier to calculate compound interest /			
	depreciation. e.g. £500 with 5% interest for 3 years 1.05³ x 500			
Percentage	% Increase/decrease = $\frac{difference}{1} \times 100$			
increase/decrease	% Increase/decrease =			
Reverse the Change	Find initial amount.			
	e.g. Watch reduced by 30% to £42.			
Fractions	70% = £42, 1% = £0.60, 100% = £60 or 42 ÷ 0.7 = £60			
Add and Subract	2 4 10 12			
Fractions	Find a common denominator $\frac{2}{3} + \frac{4}{5} = \frac{10}{15} + \frac{12}{15}$			
Add and Subract Mixed	Add or subtract whole numbers, or make an			
Numbers	improper fraction:			
	$2\frac{2}{3}+3\frac{4}{5}=5\frac{10}{15}+\frac{12}{15}$ or $2\frac{2}{3}+3\frac{4}{5}=\frac{8}{3}+\frac{19}{5}$			
Multiply Fractions	3 5 15 15 3 5 3 5 Multiply top with top, bottom with bottom:			
Multiply Fractions				
	$\frac{3}{7} \times \frac{4}{5} = \frac{12}{35}$			
Multiply Mixed	Make top heavy fraction then as above:			
Numbers	$3\frac{3}{3}\times\frac{4}{3}=\frac{23}{3}\times\frac{4}{3}=\frac{92}{3}$			
	7 5 7 5 35			
Divide Fractions	Invert second fraction and multiply:			
	$\frac{6}{1} \div \frac{2}{1} = \frac{6}{1} \times \frac{3}{1} = \frac{18}{10} = \frac{9}{10}$			
Chatiatian	7 3 7 2 10 5			
Statistics Comparing Data				
	Calculate the mean: $\overline{x} = \frac{sum \cdot of \cdot data}{number \cdot of \cdot terms}$			
	number · of · terms Find five figure summary:		_	$\left \right $
	L = lowest term, Q1 = lower quartile, Q2 = Median,			
	Q3 = upper quartile, h = highest term			
	Interquartile range: $IQR = Q3 - Q1$			
	middle 50% of data			

Торіс	Skills	Notes	
Comparing Data (Contd.)	Semi-Interquartile range: SIQR = $\frac{Q3-Q1}{2}$		
	Calculate Standard Deviation:		
	$s = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}} \text{ or } s = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}}$		
	Know that IQR, SIQR and standard deviation are a		
	measure of the <i>spread</i> of data. Lower value means		
	more <i>consistent</i> data.		
	When comparing data, always compare the measure		
	of average and the measure of spread i.e. compare		
	the medians or the means and then compare the		
	SIQR or the standard deviation. Say what each comparison means in the context.		
	e.g. On average John exercises more because his		
	mean exercise time is greater, but Zahid is more		
	consistent as his standard deviation is smaller.		
Line of Best Fit	Use knowledge of straight line to find the equation		
	of a line of best fit: y = mx + c or y - b = m(x - a)		
	Use equation of line of best fit to find estimate for		
	new value. Usually do so by substituting value for x		
	into equation.		
	Draw best fitting line:		
	 In line with direction of points 		
	 Roughly the same number of points above and 		
	below line.		